

What Can Be Gained From Yet One More Major Field Study?

Guido Franco

Technical Lead for Climate Change Research
Public Interest Energy Research (PIER) Program
California Energy Commission

Eileen McCauley

Manager, Atmospheric Processes Research Section
Research Division
Air Resources Board

5th Annual Climate Change Research Conference Sacramento, California September 9, 2008

Outline

- CalNex and CalWater: an overview
- Past CEC field studies
- Water and energy research questions
- Past ARB air quality studies
- Air Quality and climate change research questions

CalNex and CalWater: an overview

- A potential collaborative field study involving: NOAA, ARB, CEC, and DWR
- CalNex: a summer air quality and climate change field campaign to take place in the summer of 2010 (NOAA and ARB leading)
- CalWater: a winter/spring regional climate change field campaign that would start in October 2009 and end late in the spring of 2010 (NOAA, PIER/CEC, and DWR leading)
- Some CalNex and CalWater measurement activities would support each other (One overall study)

Past relevant CEC studies

- PIER supported the 2000 Central California Ozone Study
- Modeling study by Prof. Mark Jacobson (2004)
 - Aerosols are affecting our regional climate
 - Aerosols are reducing precipitation levels
- Two field studies using research aircrafts (2005, 2006)
- Measurement of BC in snow and rain in the Sierra Nevada [see the presentation by Odelle Hadley]
- Using UAV to study the transport of BC and other pollutants from Asia (on-going) [see the presentation by Craig Corrigan]

Precipitation and snow level reductions in the order of 10 percent

Satellite Based Estimates of Droplet Sizes

Source: Aircraft Measurement of the Impacts of Pollution Aerosols on Clouds and Precipitation Over the Sierra Nevada Publication Numbers: CEC-500-2008-015

In-situ measurements corroborated what was being inferred from the satellites

Cloud Physics Aircraft

Source: Aircraft Measurement of the Impacts of Pollution Aerosols on Clouds and Precipitation Over the Sierra Nevada Publication Numbers: CEC-500-2008-015

Aircraft Trajectory 02 28 2006

Source: Aircraft Measurement of the Impacts of Pollution Aerosols on Clouds and Precipitation Over the Sierra Nevada Publication Numbers: CEC-500-2008-015

Drop size vs height above cloud base

(See PIER report or Fig. 13 of Rosenfeld et al., JGR 2008)

Preliminary Numerical Studies Using Improved Models Also Suggest that Aerosols Can Negatively Impact Orographic Precipitation

Source: B.Lynn, A. Khain, D. Rosenfeld, and W. L. Woodley. 2007." Effects of Aerosols on Precipitation from Orographic Clouds." Journal of Geophysical Research. 112. 2005

Source: Stephen M. Saleeby and William R. Cotton. Interactive Impact of CCN, GCCN, and IFN on Snowfall Over the Park Range. 2008. http://ams.confex.com/ams/pdfpapers/139068.pdf

Main Research Questions for CalWater (partial list)

- What is the chemical composition of the CCN?
 What are the sources or processes involved in their formation?
- Could reducing CCN be an effective <u>adaptation</u> strategy to climate change?
- Long-range transport and deposition of black carbon on snow, and its impacts. Can we measure changes in snow reflectivity? What is the fate of BC during snow melting?
- Atmospheric rivers (see the presentation by Marty Ralph)

Air Pollution in California is a Long Standing Issue

Air Quality Field Studies in California

- Field Studies began in 1969/1970
- Recent major efforts include SCAQS87,SCOS-97, CCOS and CRPAQS
- Dozens of smaller efforts (LTADS)

Why do we still need another field study?

- •How many studies of human physiology have there been?
- Need to understand the chemistry and physics of the atmosphere well enough to

mathematically model

 California has exceedingly complex terrain and meteorology

Climate and Air Quality

Riverside, 2003-2005

Increased warming

Fresno, 2003-2005

Nexus between Air Quality and Climate Change

NOAA

NOAA WP-3D Aircraft - urban and power plant plume studies, emissions verification, regional and inter-regional transport, day/night O₃/PM chemistry, aerosol optics

NOAA R/V Ronald H. Brown - marine chemistry, marine emissions, coastal emissions, chemistry in the land/bay/sea breeze recirculation, aerosol - physics, - chemistry, - optics and satellite validation.

NOAA LIDAR Aircraft - regional distribution of O₃ and PM, urban and power plant plume studies, regional and interregional transport, boundary layer evolution and variability.

In Addition: Wind profiler network, Instrumented tall tower, flux towers

ARCTAS California

Science Questions (partial)

- How can we improve the emissions inventory for GHG, ozone and aerosol precursors?
- What are the most important chemical processes occurring during night?
- Are there significant differences between Central Valley and South Coast Air Basin precursors or ozone formation chemistry?
- What are proper oceanic boundary conditions?
- How best can we characterize and model air flow over coastal waters and the complex terrain of California?

